Определение предела выносливости при симметричном цикле. Явление усталости

Для расчетов на прочность при повторно-переменных напря­жениях требуются механические характеристики материала. Они определяются испытанием на выносливость серии стандартных (тщательно отполированных) образцов на специальных маши­нах. Наиболее простым является испытание на изгиб при симмет­ричном цикле напряжений.

Задавая образцам различные значения напряжений о мах> оп­ределяют число циклов N, при котором произошло их разрушение.

Рис. 3.4. Кривая усталости

По полученным данным строят кривую в координата (Углах --N, называемую кривой усталости (рис. 3.4).

Испытания показывают, что, начиная с некоторого напряжения, кривая стремится к горизонтальной асимптоте. Это озна­чает, что при определенном напряжении o r образец, не разруша­ясь, может выдержать бесконечно большое число циклов нагружения. Опыт показывает, что стальной образец, выдержавший Nо=10 7 циклов, может их выдержать неограниченно много.

Число циклов Nо называют базой испытании. При испытании образца после прохождения No циклов опыт прекращают. Для закаленных сталей и цветных металлов No =10 8 .

Напряжение, соответствующее No, принимают за предел вы­носливости.

Пределом выносливости называется наибольшее напряжение, при котором образец или деталь может сопротив­ляться без разрушения неограниченно долго, и обозначается а я для образца и (o r } d для детали.

Для образцов и деталей при коэффициенте асимметрии цик­ла R= - 1 предел выносли- вости при нормальных напряжениях обозначаются о – 1 и (о - 1) D , а при отнулевом цикле (R=0) соответсвенно о 0 и (о 0) D

При отсутствии в таблицах экспериментальных данных для определения пределов выносливости принимают эмпирические соотношения. Так, например, для углеродистой стали.

Многочисленные эксперименты, проведенные с образцами различных форм и размеров, а также практика эксплуатации деталей машин показывают, что прочность при переменных напряжениях (величина предела выносливости) в значительной степени зависит от формы и размеров детали, а также от состояния ее поверхности и воздействия окружающей среды.

В большинстве случаев испытания на выносливость проводят на лабораторных образцах диаметром 5-10 мм, имеющих в пределах рабочей части строго цилиндрическую форму; поверхность образцов имеет высокую чистоту. Величину предела выносливости, полученную в результате испытания таких (нормальных) образцов, будем считать одной из механических характеристик материала. Если подвергнуть испытанию на выносливость серию специальных образцов, подобных какой-либо конкретной детали, т. е. отличающихся от нормальных образцов наличием концентратов напряжений, абсолютными размерами, качеством обработки поверхности (или только некоторыми из перечисленных факторов), то, как правило, при одном и том же материале нормальных и спешильных образцов предел выносливости, определенный при испытании последних, ниже.

Таким образом, установлено, что пределы выносливости конкретной детали и материала, из которого она изготовлена, различны. Влияние факторов, от которых зависит соотношение между пределами выносливости материала (нормального образца) и детали, более или менее полно изучено лишь для симметричного цикла изменения напряжений. Поэтому примем, что величины различных факторов, влияющих на пределы выносливости, определены при испытаниях в условиях симметричных циклов изменения напряжении.

Кратко рассмотрим влияние на величину предела выносливости концентрации напряжений, абсолютных размеров и состояния поверхности деталей. При этом числовые значения коэффициентов, отражающих влияние перечисленных факторов, не приводим, они имеются в специальной литературе.

Концентрация напряжений. Снижение предела выносливости за счет наличия тех или иных концентраторов напряжений (выточек, отверстий, шпоночных канавок, прессовых посадок и т. д.) учитывается эффективным, или действительным, коэффициентом концентрации напряжений, обозначаемым - для нормальных и - для касательных напряжений.

Эффективный коэффициент концентрации напряжений представляет собой отношение предела выносливости образца без концентрации напряжений к пределу выносливости образца (или детали) тех же размеров, но с концентратором напряжений:

В отличие от теоретического коэффициента концентрации, зависящего только от формы (геометрии) детали, эффективный коэффициент концентрации зависит также и от свойств материала детали: чем менее пластичен материал, тем он чувствительнее к концентрации напряжений. Эффективные коэффициенты концентрации устанавливают опытным путем, но в некоторых случаях при отсутствии экспериментальных данных их вычисляют по известным значениям теоретических коэффициентов концентрации (ссна и ) по формулам

Здесь q - так называемый коэффициент чувствительности материала к концентрации напряжений. Величина q возрастает с повышением предела прочности материала, но не может быть больше единицы (в этом предельном случае теоретический и действительный коэффициенты концентрации равны между собой).

Для деталей из серого чугуна т. е. можно считать, что чугун практически нечувствителен к концентрации напряжений.

При неответственных расчетах и отсутствии данных о величинах действительных и теоретических коэффициентов концентрации величину можно определить приближенно по следующим эмпирическим соотношениям:

а) при отсутствии острых концентраторов напряжений для деталей с чисто обработанной поверхностью

б) при наличии острых концентраторов напряжений

В приведенных соотношениях величины выражены в при их использовании не следует отдельно учитывать влияние качества поверхности детали.

Снижение концентрации напряжений, повышающее экономичность конструкций, достигается различными конструктивными мероприятиями (например, путем увеличения радиусов переходных галтелей в местах ступенчатого изменения размеров поперечного сечения), и термохимической обработкой (например, азотированием) зон концентрации.

Влияние абсолютных размеров детали. Снижение предела выносливости с ростом абсолютных размеров детали носит название масштабного эффекта. Влияние размеров детали учитывается масштабным фактором (или масштабным коэффициентом) представляющим собой отношение предела выносливости, определенного при испытаниях образцов диаметром к пределу выносливости, определенному при испытании геометрически подобных образцов (или деталей) больших размеров, т. е.

Величина масштабного фактора зависит от материала детали (более прочные стали чувствительнее к масштабному эффекту), со размеров, вида деформации (как правило, при одинаковой форме размерах детали ), наличия концентраторов напряжений

Влияние состояния поверхности детали. Усталостные трещины, как правило, начинаются от поверхности детали. Поэтому состояние поверхностного слоя оказывает существенное влияние на прочность при переменных напряжениях.

Риски от механической обработки, повреждения поверхности и т. п. играют роль концентраторов напряжений и могут вызвать весьма значительное снижение предела выносливости. Особенно неблагоприятное влияние оказывает коррозия поверхности.

Влияние состояния и качества поверхности детали на величину предела выносливости учитывают коэффициентом качества поверхности (коэффициентом поверхностной чувствительности), обозначаемым Этот коэффициент представляет собой отношение предела выносливости, определенного при испытаниях образцов с полированной поверхностью, к пределу выносливости, определенному при испытаниях таких же (по форме, размерам и материалу) образцов с заданным состоянием поверхности, т. е.

Кривая Веллера. Горизонтальная ось - число циклов (N), вертикальная - максимальное напряжение цикла (σ max)

Для определения предела выносливости материала производится на испытательной машине испытания на усталость партии образцов (6-12 шт.). Нагрузка на отдельные образцы даются такие, чтобы они разрушались при разном количестве циклов нагружения в диапазоне циклов N = 10 3 ... 10 7.

Обработка полученных экспериментальных данных сопровождается построением по точкам в координатах log (N)-σ max кривой усталости, которую в литературе часто называют кривой Веллера.


Исторические данные

Наибольший вклад в научные основы проектирования металлических конструкций, подвергающихся циклическом нагрузке, внес немецкий инженер Август Веллер (en: August W?hler) классическими опытами с железом и сталью в условиях повторного растяжения-сжатия, результаты которых были опубликованы в 1858-1870 годах. Л. Шпангенберг (de: Louis Spangenberg) в 1874 году впервые графически изобразил результаты исследований, опубликованных А. Веллер в виде таблиц. Времени графическое представление полученной зависимости между амплитудами напряжений цикла и числом циклов до разрушения называют диаграммой (кривой) Веллера.


Литература

См.. также

Это незавершенная статья о

Предел выносливости обозначается (или ), где индекс R соответствует коэффициенту асимметрии цикла. Так, например, для симметричного цикла он обозначается , для отнулевого цикла (при ), для постоянного цикла .

Предел выносливости при симметричном цикле является наименьшим по сравнению с другими видами циклов, то есть .

Так, например, ; .

предел ограниченной выносливости

Для расчета деталей, не предназначенных к длительной эксплуатации, возникает необходимость в определении наибольшего значения напряжения, которое может выдержать материал при заданном числе циклов (N), значение которого меньше, чем базовое (). В этом случае по кривой усталости и заданному числу циклов (N) определяется соответствующее напряжение (), называемое пределом ограниченной выносливости .

Факторы предела выносливости при симметричном цикле

При оценке прочности детали, работающей в условиях статического нагружения, механические характеристики материала детали полностью отождествляются с механическими характеристиками материала образца, полученными в результате эксперимента. При этом не учитывается разница ни в форме, ни в размерах детали и образца, ни некоторые другие отличия.

При расчете детали на усталость необходимо учитывать упомянутые факторы. К наиболее существенным факторам, которые влияют на предел выносливости при симметричном цикле, относятся концентрация напряжений, абсолютные размеры поперечного сечения детали и шероховатость ее поверхности. Это легко объясняется тем, что все упомянутые факторы способствуют возникновению и распространению микротрещин.

Влияние концентрации напряжений

Вблизи выточек, у краев отверстий, в местах изменения формы стержня, у надрезов и т.п. наблюдается резкое увеличение напряжений по сравнению с номинальными напряжениями, вычисленными по обычным формулам сопротивления материалов. Такое явление называется концентрацией напряжений , а причина, вызывающая значительный рост напряжений – концентратором напряжений .

Зона распространения повышенных напряжений носит чисто местный характер, поэтому эти напряжения часто называют местными.

При напряжениях, переменных во времени, наличие концентратора напряжений на образце приводит к снижению предела выносливости. Это объясняется тем, что многократное изменение напряжений в зоне очага концентрации напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением образца.

Для того чтобы оценить влияние концентрации напряжений на снижение сопротивления усталости образца с учетом чувствительности материала к концентрации напряжений, вводят понятие эффективного коэффициента концентрации, который представляет собой отношение предела выносливости стандартного образца без концентрации напряжений к пределу выносливости образца с концентрацией напряжений: (или ).

Влияние абсолютных размеров поперечного сечения

С увеличением размеров поперечных сечений образцов происходит уменьшение предела выносливости . Это влияние учитывается коэффициентом влияния абсолютных размеров поперечного сечения (ранее этот коэффициент назывался масштабным фактором). Упомянутый коэффициент, равен отношению предела выносливости гладких образцов диаметром d к пределу выносливости гладкого стандартного образца диаметром, равным 7,5 мм: (или ).

Шероховатость поверхности

Механическая обработка поверхности детали оказывает существенное влияние на предел выносливости. Это связано с тем, что более грубая обработка поверхности детали создает дополнительные места для концентраторов напряжений и, следовательно, приводит к возникновению дополнительных условий для появления микротрещин.

Предел выносливости

Преде́л выно́сливости (также преде́л уста́лости ) - в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость , то есть способность воспринимать нагрузки, вызывающие циклические напряжения в материале.

Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклических нагружений.

Предел выносливости обозначают как , где коэффициент R принимается равным коэффициенту асимметрии цикла. Таким образом, предел выносливости материала в случае симметричных циклов нагружения обозначают как , а в случае пульсационных как .

Установлено, что, как правило, для сталей предел выносливости при изгибе составляет половину от предела прочности:

Практическое применение диаграммы предельных амплитуд заключается в том, что после построения диаграммы, проводятся испытания на только конкретные значения и . Если рабочая точка располагается под кривой, то образец способен выдержать неограниченное количество циклов, если над кривой - ограниченное.

См. также

Литература

  • Феодосьев В. И. Сопротивление материалов. - М.: Изд-во МГТУ им. Н. Э. Баумана, 1999. С. 479-483. ISBN 5-7038-1340-9

Wikimedia Foundation . 2010 .

Смотреть что такое "Предел выносливости" в других словарях:

    предел выносливости - предел выносливости: Максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение при базе испытания. Примечание Пределы выносливости выражают в номинальных напряжениях. [ГОСТ 23207 78, статья 47]… … Словарь-справочник терминов нормативно-технической документации

    предел выносливости - Наибольшее напряжение, при котором материал в состоянии выдержать заданное большое число циклов нагружения [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] EN endurance limitfatigue strength DE… … Справочник технического переводчика

    Fatigue limit Предел выносливости. Максимальное напряжение, которое может привести к образованию усталостной трещины при точно установленном числе циклов напряжения. Должно быть установлено значение максимального напряжения и коэффициента роста… … Словарь металлургических терминов

    Предел уста л о с т и. мехинич. хар ка материалов; наибольшее напряжение цикла, к рое материал может выдержать повторно N раз без разрушения, где N заданное технич. условиями большое число (напр., 106, 107, 108). Обозначается бr, где r коэфф.… … Большой энциклопедический политехнический словарь

    предел выносливости - максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостного разрушения до базы испытания (предварительно задаваемое наибольшая длительность испытаний на усталость … Энциклопедический словарь по металлургии

    Наибольшее напряжение, при котором материал в состоянии выдержать заданное большое число циклов нагружения (Болгарский язык; Български) граница на издръжливост (Чешский язык; Čeština) mez únavy (Немецкий язык; Deutsch) Dauerfestigkeitsgrenze… … Строительный словарь

    ПРЕДЕЛ ВЫНОСЛИВОСТИ - максимальное по абсолютному значению напряжение цикла, при котором еще не происходит усталостное разрушение до базы испытания (предварительно задаваемая наибольшая длительность испытаний на усталость,… … Металлургический словарь